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A deterministic signal s in zero mean Gauss an se N isoberve

through a zero memory nonlinearity f(x). The reconstruction of the sig-

nal is considered when the nonlinearity, the noise covariance and the

first or second order moments of the output process f[s+N] are known.

Arbitrary signals can be reconstructed for monotonic and certain odd, not

necessarily monotonic, nonlinearities; included here are hard limiters,

quantiiers and infinite interval windows. Arbitrary signals can be re-

constructed, up to a global sign, for two distinct classes of even non-

linearities; included here are 2v-th law devices and symmetric interval

. windows. D D C
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I. INTRODUCTION

Consider a signal s observed through a nonlinear system and suppose

that we want to reconstruct the signal from the output of the system. Un-

less the nonlinear system is one-to-one, an unrealistic situation, the

signal cannot be uniquely reconstructed. As a simple example, consider the

zero memory nonlinearity f(x) = I(a.-)(x): The only information about s(t)

contained in the output f[s(t)] is whether s(t) s a or s(t) > a and it is

evident that there is an uncountably infinite number of signals having the same

output. Intuitively, this situation may improve if there is an additive

noise N at the input of the nonlinear system so that the observed output

is f(sC.t) + N(t)]. If the set of values of the random variable N(t) is suf-

ficiently large, knowledge of certain moments of the output f[s(t) + N(t)]

may provide more infornm ion on the signal than in the absence of noise.

This is indeed true when the marginal distributions of the noise are Gaussian,

in which case the signal can 'Ie uniquely reconstructed as shown in Theorem 1.

The idea that additive input noise helps in reconstructing the signal was

first raised by GrUnbaum [1] and is investigated in this paper.

Specifically, we consider a deterministic signal s in additive stationary

Gaussian noise N, with zero mean and covariance function R, observed through

a zero memory nonlinearity f. We are concerned with the reconstruction of

the signal from the knowledge of the nonlinearity f, the noise covariance R,

and the first or second order moments of the output process f(s+N). We show

that the signal can be reconstructed in the following cases. NTIS White SectlnI
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() From the knowledge of the nonlinearity f, the variance R(O) of

the noise, and the first or second moment of the output, the signal is re-

constructed for monotonic nonlinearities which need not be strictly mono-

tonic (Theorem 1) as well as for some odd nonlinearities with non-negative

Hermite coefficients (Theorem 2). Included here are hard and soft limiters

and infinite interval windows.

(ii) From the knowledge of the nonlinearity f, the noise covariance

function R whose zeros are assumed isolated, and the mean and correlation

functions of the output, the signal is reconstructed up to a global sign

for the following two classes of even nonlinearities: (a) bounded below

or above and monotonic on the positive real line, (b) with nonnegative

Hermitd coefficients. Included here are 2vt- law devices and symmetric

interval windows. Similar results are, in fact, established for nonlinearities

symmetric around an arbitrary point. (Theorem 4).

Here we are assumilng that the noise covarlance function R is known. The

problem of reconstructing the noise covariance R from the correlation func-

tion of the output process f(N), i.e. the signal-free case, has been con-

sidered in [2],[3].

The stationarity assumption on the Gaussian noise is used only to make

the signal reconstructi-, feasible from a practical viewpoint. Even though

it is not stated so, Th ims 1 to 3 need only the one-dimensional distribu-

tions of the noise to bf sian, while Theorem 4 requires the bivariate

distributions of the nc - o be Gaussian. It should be clear that results

similar to Theorems 1 * 4 woild also be true for other noise processes with

sufficiently smooth, s.o,,,, ,ric first and second order distributions.
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The organization of the paper is as follows: The results on the recon-

struction of the signal are presented and discussed in Section III. The

derivations in Section III are kept to a minimum by collecting the essential

elements of the proofs into propositions which are presented in Section II

and could be of independent interest.
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11. CERTAIN MOMENT PROPERTIES OF FUNCTIONS

OF GAUSSIAN RANDOM VARIABLES

In this section we study, for use in the following section, certain

properties of the moment functions

and

rf(x~y~p) -E~f(E+x)f(rn+y)] (2)

where E and n are jointly Gaussian random variables with means zero. variances

a2,correlation coefficient f), Joint density *(x,y;p) and marginal densities

*(x;o); f is a (nonconstant) real-valued Borel measurable function on the

real lfne. As the notation indicates, we treat f an~d a as fixed and we con-

sider the dependence of t.on x(' (-a,-) and of r on x,yE (-.-~) and pe [-I,1).

The following momea~ inequality simplifies the conditions under which

w~ and r exist

Elf(E+x)I e. exp[x2/2(j2J L1/2[f2(~J (3)

Thus

E~f 2(t)] < E I f (,x) for allI x.

This can be obtained as follows:

Elf(&+x)I = r~ tf(u+x)I (u;a)du *r lf(y~l#(y-x;ay)dy

- exp~x2/2a2j r if(y) 11/2 (y;a* 1/2(y-2x;a)dy

s: expCx2 /202] r f2(y)#(y;o)dy * ' (y.2x~o)dyl 1/2

*xp~x2/202) F"'2[f2()
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It then follows from (3) that Uf(x) exists for all x provided E~f2( )] <=,

and rf(x,y;p) exists for all x,y and pE [-i,l provided E[f 4( )J<c.

We first Jerive certain analytical properties of pf.

Proposition 1. If E[f 2()] < , then for all -=<x<, Pf(x) has the power

series representation

pf(x) I akxk (4)
k=O

where

ak 2 k.= f(x) Hk,,(x)o(x;o)dx

and the convergence is absolute. pf(x) is infinitely differentiable and

(n)
On (x) has the integral representation

4 n)(x) = -1n f' f(y+x)H ,(y)O(y;o)dy . (5)

a -00

Proof, The Hermite polynomials {HkO()C)= are the orthogonalization (not

orthonormalization) of the sequence {E k}= 0 via the Gram-Schmidt procedure.

{Hk,O(x)}k=o is a complete orthogonal set in L2(O(xjj)dx) and

S-HkO(x) = exp(zx- 2 z2)

k;Ok

E[Hj, a )Hk,a(&)] = k! a6jk

E[Hk,a({+x)] Xk  (6)

where (6) is shown in (1]. Since f(x)E L2(0(x;a)dx), we have

f(&) a H ( )

kOk k~ok4;0

in quadratic mean, where

~- -- - - - - . - -5



E(f(I)Hko(01)) 2(0

or

Jr f(y)H k,(y)(y;o)dy - ak ki a2k

Now inequality (3) implies that

f(y+x) ak HkO(y+x)
k=O

in Ll(¢(y;o)dy) for all x and hence

p(X) - E[f(E+x)] I akE[Hka(]+x)J

kk.2a k 10 a kx k

wherelthe last step follows by (6). The absolute convergence of the series

(4) is seen as follows. We have
°w

> 2~'&]-O 2 [H2 () a2 2k k
m > E f ( ) J k akE k i o k

so that a2a 2kk! .0 as k-+- and for large k, jaki k . Thus it sufficeskk
to show that for each x

k
k O AT

which follows easily from the ratio test. The power series representation (4)

implies that p(x) is infinitely differentiable, has a finite number of extrema

an each finite interval, and is not constant on any interval.

The derivation of (5) proceeds as follows. From (4) we have
( • =X k! x k-n

nn kn

: ke k' WI .

ka oZklkn)t f f(y)Hk 0 (y)(y;o)dy
ki n a- 

'
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Hence if for each fixed x

G G f I k-n )(y;a)dy < (7)1 f If(Y)I I1Hkoo(Y)l ~~ ~

kin -n

then by the bounded convergence theorem,

(n) xk-n 1
11n (x) f G f(y) 2k Hk,o(y) (y;a)dy-= kzn cy (k-n) I

Now the term in brackets is equal to

I XI .2..H (Y) = - exp[xn  I k n

ax k-O k.a" 2a

= exp[y 2/2a2 I__n_ exp[- (y-x)2]ax n  2ay

1 0-2nO(Y( a H n,a(YX)¢(YX;U)•

Thus
(n)1

S(n)(x) - - 1 f(y) I1, ,(y-x)O(y-x;a)dy

We now verify (7). The expression in (7) is equal to

kn 2 (k-n)! EIfQ)I 10k,o()

k-n a 2 k-n)! 1 , )

SE12 [f2( n k 1/1 Ef/2[f2( )J ( Ix)l/0
00 k-n)! on J0

k=n a (k-n)! an oo

and the sum in the last ,xpression above is finite by the root test. 0

We now derive a series expansion of the second order moment function

rf(xy;p) in terms of the derivatives of the first order moment function pf(x).

7
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Proposition 2. If E(f4( )] < , then for all --<x,y<o and -l<p<l, we have

n 2n
rf(Xy;P) 2 Z (n)

nO n! p f ) (Y),

Proof. Since E[f4 ()] < , inequality (3) implies that E[f2(&+x)J < for

all --<x<-' and thus

r(xy;p) = E(f( +x)f(n+y)]

is well defined and finite for all --<x,y<- and -lsp~cl. Now for all

--<u,v<- and -l<p<l we have [4]

0(ulvip) n

(u;)(v;C H) n H n,

and, since ' IPI2n < ou, the convergence is also in L2(4(u;a)0(v;o)du dv).
n=O

Finally, since f(u+x)f(v+y) is in L2(*(u;o)*(v;a)du dv), it follows that

r(xy;p) ff f(u+x)f(v+y) C[v ;j] 0(u;a) (v;o)du dv

n

=I P- ff f(u+x)f(v+y) H n,(u) Hn,o(v) (u;o)*(v;a)du dv

and the result follows from (5) of Proposition 1. 0

We finally establish a certain lack of symmetry of the function rf, which

plays a crucial role in the reconstruction of the signal when the function f

is symmetric.

Proposition 3. If the nonconstant function f is symetric around some x and
0

satisfies (a) or (b):

(a) f is bounded below or above, monotonic on [xo,-) and such that

E[f4(01 < -,

(b) Ef4( +x o)] < - and the coefficients (a2n}n.l of f(x+xo) in its

Hermite expansion are nonnegative,

8
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then

rf(Xo+XXo+y;p) # rf(Xo-X,Xo+y~tp)
for all x,y,p 0 0. (8)

rf(xo+xxo+y;p) # rf(xo+xXo-y;p)

It should be noted that when p-O, equality holds in (8) for all xy.

Indeed, we have

r f(x,y;O) = Pf(X)Pf(Y)

and for all x,

Pf(x 0+x) -. Af(xo-x) f [f(u+xo+x) - f(u+xo-x)](u;a)du = 0

since f(u+x 0+X) - f(u+xo-x) is an odd function of u.

Proof. Putting g(x) = f(x+x0 ), it is clear that g has all the properties

that f has with xo0 O and that

rg (xy;p) = E[g(C+x)g(rl+y)]

- E[f(+x 0+x)f(n+xo+Y)]

a rf(xO+x,xO+Y~).

Thus it suffices to prove (8) in the case xo=O.

(a) Assume f satisfies condition (a). Without loss of generality, we

may replace the property that f is bounded below (or above) by the property

that f(x) 2 0 (or ; 0) for all x. Indeed, If f is bounded below, say, i.e.

if f(x) , A > - for all x, putting q(x) * f(x) -A, we have q(x) - 0 and

r q(xy;p) - Pq(-X,y;p) = rf(x~y;P) - Pf(-xY;P)

r q(xy;p) (x,-y;p) = rf(x,y;p) - rf(x,-y;P)

These equations follow from

rq (x,y;p) - rq (x,-y;p) rf(x,y;p) - rf(x,-y;p)+AE[f(n+y)-f(n-y)]

q q9
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and the fact that [f(v+y) - f(v-y)) is an odd function of v which implies

that E[f(n+y)-f(n-y)] L 0.

Thus, under Assumption (a), it suffices to prove the result when the

nonconstant function f is nonnegative, even and nondecreasing on [0,M).

When pt- ±1, then ir, a.s. and

r(x,y;±l) - r(x,-y;±l) = rf(±u+x)[f(u+y)-f(u-y)]¢(u;)du.

It is seen that the term in bracket is an odd function of u which is nonnegative

on [0,-). Since f is even, nonnegative and nondecreasing on [0,-), it follows

that for all x,y # 0, the integral is nonzero.

From now on we assume that 0 <p <l (the rase -l<p<O can be treated simi-

larly). Then

r(x,y;p) - r(x,-y;,)) = ff f(u+x)[f(v+y)-f(v-y)]¢(u,v;p)du dv.

Denoting by *(vju) - *(uv;p)/ (u;o) the conditional density of n given &%u,

which is Gaussian with mean pu and variance a2(I-p2), we have

r(x,y;p) - r(x,-y;p) = rf(u+x),(u;o) {rf(z)[¢(z-yu)-(z+yu)jdz)du

f f(u+x)*(u;a)J(u;y)du , (9)

where

J(u,y) - f f(z)[4(z-yju) - ¢(z+yju)]dz

Note that as a function of z, [t(z-ylu) - *(z+yju)) is antisynmnetric around

z pu and is positive on (pu,). Now since f(z) is even and nondecreasing

on [,), we can write (see Fig. 1)

0

; 10



"Pu pU 3pu
J(uy) f + + f + J-® -pu Pu 3pp

and conclude that for u >0 we have

-pu - Pu 3pu
f + f 2 0 and f + f 0

-0 3pu -Pu PU

so that J(u,y) : 0 for u>O, and similarly J(u,y) : 0 for u<O. It is also

clear that J(Oy) - 0, that J(uy) is an odd function of u, and that J(u,y)

is not identically zero as a function of u. Finally, since f is even, non-

constant, nonnegative, and nondecreasing on [O,ao), it follows from (9) that

for all xy 0, we have

r(x,y;p) - r(x,-y;p) 0 0

It is shown similarly that r(x,y;p) - r(-x,y;p) 0 0 for all x,y 0 0. Thus

the proof of the proposition under Assumption (a) is complete.

(b) Assume now that f satisfies Assumption (b) (with xo0 ). Since f is

even, we have an-O for all odd n so that

) a2n H 2n'() (10)

in quadratic mean.

We first consider the case p-1 (the case p--1 being similar). Then

-n a.s. and

r(xy;l) • E~f(C+x)f( +y)]- f f(u+x)f(u+y)*(u;o)du

f f f(z)f(z-x+y)'(z-x;o)dz
.A f

•E(f(Q) [f(&-x+y) (E-x ;a)f'I (Q;a)] (

.. .... ...



Now the random variable in bracket has a finite second moment for all xy,

since

f 2(z-x+y) 2(Z-O) dz - exp~x2/a 2) 1 f2(z-x+y)*(z-2x;a)dz

a exp[x 2/o 2] E[f2 (+x+y)

< x (x+y ) 2+2x 2  1/2f4(

20
where the inequality follows from (3) applied to f2. Since f has the ex-

pansion (10) in quadratic mean, we then have by (11)
goo

r(xy;l) = n a2 n f H2n,(z)f(z-x+y)f(z-x;o)dz . (12)

Similarly, we obtain for the integral in (12)

J H2no(z)f(z-x+y)o(z-x;a)dz f f(u)H2 , (u+x-y) (u-y;a)du

E(f(&)(H (+x-y)(4-y;o)W1 (&;o)11

X ao0 aE[H ~(&)H nfo(+x-y)¢(-y;o)Y" (&;;o)]

na
moo

•mO a2mEEH~,o( +Y)H2n~ ( + )

It then follows by (12) that

r(x,y;1) = n a2na2mE[H 2n 
',(&+x)H 2

m o(4+y)j. (13)

Sincei n
H n,o(,+x)= k (k) xn'kHk,(&)

n~a k=O

we can evaluate the expectation in (13), using the orthogonality of the

Hermite polynomials, and obtain

..



2miin(nm) 2) 2kxZn-kym-k
r(x,y;l) - a~a kt(2n)(km)a x n-ym

n,m* -

and thus - inn n,m) Z m2 nk2-

r(xy;1) - r(x,-y;l) a 2 2 aina ,,) kt( k)( )2kx nky2m-k
n,m-1 k k

Since a2n > 0, n a 1, with at least one coefficient being strictly positive

(since f is nonconstant), it is clear that

r(x,y;l) - r(x,-y;l) # 0 for all x,y # 0.

Now let -1 < p< 1. Since f is even, we have by (4) of Proposition 1

that

(n) (2k) a 2k-n (14)
Wl~x k (2k-;)! a2k x14

which is an even function of x for n even and odd for n odd. Then from

Proposition 2, we obtain
0* 1 pn 2n (n)w~ )y

r(x,y;p) - r(x,-y;p) - 1 n1 n(n) ( (n) (

n=O

2 2n- a2(2n-l) (Zn-I)(x)(2nl)(y). (15)
nlP

Again, since a2kk O, k i 1, with at least one coefficient being strictly

positive, we have by (14) that p(2n-l)(x) # 0 for x # 0 for all n such that

I(2n-l)(X) is not identically zero. It is then clear from (15) that

r(x,y;p) - r(x,-y;p) 0 0 for all x,y,p#O

The proof of r(x,y;p) - r(-x,y;p) # 0 for all x,y,pO is similar 3nd

thus the proof of the proposition under Assumption (b) is complete. 0m
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III. THE RECONSTRUCTION OF THE SIGNAL

In this section, we consider the problem of reconstructing the real

deterministic signal s = {s(t),-<t<-} from the knowledge of the nonlinearity

f and the first or second order moments of the output process

f(s+N) = {f(s(t)+N(t)],-o<t<o), where the noise N - {N(t),--W<t<-} is a real

stationary Gaussian process with mean zero and known continuous covariance

function R(t) with R(O) - a2. Since f is known, so are the functions pf(x)

and rf(xy;p) introducted in Section II. Also known are oneormore of the

following functions: The moments mk(t) of the output process

mk(t) x E{fk[s(t)+N(t)]} = Pfk[S(t)], k = 1,2,

and the correlation function C(t,T) of the output process

C(t,T) = E{f[s(t)+N(t)]f~s(r)+N(T)j)

r 1
- f[sMt)st) R tll .

We present several results on the reconstruction of the signal s for various

classes of nonlinearities f. It is important to note that the propositionsof

Section II constitute the crux of the proofs of these results. By referring

to these propositions, the derivations in this section become clear and simple.

We first consider monotonic nonlinearities for which reconstruction of the

signal s is always possible, which is quite clear on intuitive grounds as well.

Theorem 1. The signal s(t) can be reconstructed from the k-th moment mk(t),k( )

k = 1 or 2, of the output process when the nonlinearity f is such that fk(X) is

monotonic and nonconstant and fk(x)E L2(O(x;a)dx).

14 - - _ _ _



Proof. By (5) of Proposition 1, we have for all x

14k~xk -. If(y+x) H1 ,,y 0 (y;o)dy

k i f (fk(+Y) - f k (x-y)J (y;a)dy.

if f k(Y) is nonconstant and nondecreasing, say, then fk(x+y) f rk (xy) k 0

ki

and Leb~y : f k(x+y) - f k(x-y)> 0} > 0 for all x. It follows that Jjk(x) > 0,

-00<x.", i.e. ilfk(x) is strictly increasing. Similarly, fk x) nonconstant

and nonincreasing implies that IPfk(x) is strictly decreasing. Hence s(t) can

be reconstructed from m k(t) - 1fkEs(t)J*

Aside from the integrability conditions, the nonlinearities covered by

Theorem 1 are those which are mionotonic or whose absolute values are monotonic

(values of k larger than 2 do not enlarge this class). Examples of monotonic

nonlinearities satisfying the conditions of Theorem 1 are the hard-limiter,

smooth-limiters, quantizers, v-law devices with v odd and infinite interval

windows L1 (.,a(x) -or I (aw)(x)

It should be emphasizA~ that the nonlinearity f is assumed to be monotonic

but not strictly monotonic and thus the result of Theorem 1 is a substantial

improvement over the no noise case. As a simple example that illustrates this

point well, consider the monotonic nonlinearity f(x) - 1 (x),-.<a<a. in

the absence of noise, all we wouni be able to conclude by oserving the output

f[s(t) i would be whether s(t) conii or s(t) > a. In sharp contrast to this,

when there is additive Gausi n noise N the first order moment of f[s(t) oni(t)

is sufficient to recostruct the signal s.

15



We iow turn our attention to nonlinearities that are not monotonic.

The first result i,, this direction concerns certain odd functions.

Theorem 2. The signal s(t) can be reconstructed from the first moment m1pt)

of the output procL. when the nonconstant nonlinearity f is odd, satisfies

f(x)E L2(*(x;o)dx,and is such that the coefficients in its Hermite expansion

are nonnegative.

Proof. By (4) of Proposition I, we have for all --<x<-,

4W (X) n n anxn-1

Since f is odd, a2n 0 0, and thus

vi(x.) m1O (2m+l)a 2m+l x2m 0

for all x O, since at least one of the nonnegative coefficients {a2m+lI is

positive. It follows that pf(x) is strictly increasing and thus s(t) can be

reconstructed from vnl(t) = Pf[s(t)J. 0

It should be rointed out that one may easily construct examples of non-,

monotonic nonlinearities f satisfying the c.,,nditions of Theorem 2. For ex-

ample, f(x) = x3-a 2 x = 2a2H ,0(x) + H 3,(x) is clearly nonmonotonic and

satisfies the conditions of Theorem 2. In fact Pf(x) a x(x2+2a2) is strictly

monotonic.

From now on we concentrate on nonlinearities f symmetric around an arbi-

trary point xO.

Theorem 3. If f is nonconstant, symmetric around some xO , and satisfies either

(a) or (b):

16



(a) f is monotonic on (x0,,,,) and f(x)E L2( (x;o)dx),

(b) f(x+xo)E L2 ( (x;a)dx) and the coefficients {a,,,)1' in its

Hermite expansion are nonnegative,

then is(t)-xol can be reconstructed from the first moment ml(t) of the output

process.

Proof. We first note that the symmetry of f around x0 implies that of pf(x):

Wf(xo-X) = f f(x0-x+y) (y;o)dy = f f(x0+x-y) (y;a)dy

0

= f f(xo+x+z)(z;c)dz = pf(Y)+x).

(a) By (5) of Proposition 1 we have for all x

q4(x) = -L fy[f(x+y) - f(x-y)]l(y;)dy

Suppose f is nondecreasing on [xo,-). Then for every x> xO , we have

f(x+y)-f(x-y) ! 0 for all y >0 and Leb{y: f(x+y)-f(x-y) >0) >0.

It follows that ij(x) > 0 for x x0 and thus W f(x) is strictly increasing on

(x o-). Similarly, if f is nonincreasin9 on [x0o-), Pf(x) is strictly decreas-

ing on (xoCu). Thus pf(x) is synmnetric around x0 and strictly monotonic on

(xo,09).

(b) By (4) of Proposition 1 applied to g(x) = f(x+xo), we have for all x,

P.g (x) = anxn

and

Pf(x) 0 ug(X-XO) a(xxo)n .

n=0n
Since g(x) is even, a2,+, = 0, and thus

Pf(X) n 10 &2n(xXo2n
n =



is symmetric around x0 and is strictly increasing on (xoa),since a2n •O,n a I

with at least one coefficient positive.

Since in both cases (a) and (b), pf(x) is symmetric around x0 and strictly

monotonic on (xo._), Is(t)-x l can be reconstructed from m,(t) - pf(s(t)l. 0

We remark that if the signal s in additive noise N can be observed through

two nonlinearities f and 1, satisfying the conditions of Theorem 3 with distinct

centers x0 and Rot then s(t) can be reconstructed from the two moment functions

m(t) and i1 (t), since

s(t) - x021 s(t) - 012 -(i0 - Xo) [2s(t)'xo'Ro0"

It is clear that for the nonlinearities f satisfying the conditions of

Theorem 3, the first order moment function mI(t) of the output process deter-

mines Js(t)-xoj and we are left with the problem of determining the sign of

s(t)-x0 for each t. This is now accomplished by using the correlation function

C(t,T) of the output process.

Theorem 4. Assume f is nonconstant, syniketric around some x0 and satisfies

either (a) or (b):

(a) f is bounded below or above, monotonic on [X o,) and such that

f2(x)E L2(0(x;o)dx),

(b) f2(X4Xo)E L2 (O(x )dx) and the coefficients (an n., of f(x+xO) in

its Hermite expansion are nonnegative.

Assume the correlation fun tion R of the noise N has at most a finite number

of zeros on each finite interval. Then from the mean function m and the cor-

relation function C of the output process, a set of two signals s and 2xo-s

18



can be reconstructed (there is no way to determine which, among these two,

is the actual signal). When f is even, i.e. x0 O, then the signal s is re-

constructed up to a global sign.

Proof. (a) f clearly satisfies the conditions of Theorem 3(a) and thus the

function a(t) - Is(t)-xo1, -W<t<0, can be reconstructed from the mean function

m1. For any t such that a(t) 0 0, we have s(t) x x. Consider now two dis-

tinct points t and T such that a(t) 0 0 0 a(T) and R(t-r) 0 0. We then have

s(t) - x0 ± a(t), s() - x0 ± a(T) and

C(t,T) - rf~s(t),s(-);o'2 R(t-T)].

Therefore, C(t,T) is equal to at least one of the four numbers

rfLx0±a(t),x0±a(T);o R(t-t)], which are related as follows (for brevity,

we drop the dependence of rf on R):

rf~x0+a(t),x0+a(-)] # rf[x0+a(t),x 0-a(T)]

rf[x0-a(t),x 0+a(T)] $ rf[x 0-a(t),x0 -a(T)]

by Proposition 3, and

rf[x0+a(t),x 0+a(T)] = rf[x0-a(t),x 0-a(T)]

rf[x0 +a(t),x0-a(T)] - rf[x0 -a(t),xp+a(T)]

since for all x,y, rf(x0-xxo-Y) = rf(x 0+x,x0+y), a straightforward consequence
of the symmetry of f around x0. It follows that if we choose s(t) Xo+(t),

then exactly one of the two values

rf[x 0+s(t),x 0+a(T)], i'f[x 0 +a(t),x 0-a(T))

will equal C(t,t), and if we choose s(t) = x0-a(t) then again exactly one

of the two values

rf[x 0 "a(t),x0+a(T)], rf[x0-a(t),x 0-a(T)]

will equal C(t,i). Thus for each choice of s(t), the value of s(T) is uniquely

determined by the correlation C(t,T).

__ _19__ m__--
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The reconstruction procedure is now clear: If a(t) - 0, then s(t) - xO.

Otherwise, fix an arbitrary point t0 with a(to)0O and let t be such that

a(t)0O and R(t-t0 )0O. Then for each possible choice of s(to), s(tO ) a X0+a(tO)

or s(to) - xO-a(to), s(t) is uniquely determined by comparing C(to,t) with

the two numbers rf(S(to),xOa(t).O 2R(t0-t)]. Thus, we determine two signals

s and s2 which are related by sl(t)+s2(t) - 2xO for all t and which give rise

to the known mean and correlation functions mI and C. It is also clear from

the above that the actual signal s giving rise to the known mean and correla-

tion functions m, and C must be identically equal on (--,-) to either sI or s2.

Thus, the reconstructed set of two signals SlS 2 ) is the same as the set

{s,2x0-s. In particular, when the nonlinearity f is even, i.e. x0-0, then

the actuil signal s is reconstructed up to a global sign.

(b) Follows in a similar manner by using Theorem 3(b) and Proposition 3(b). 0

Some simple examples of nonlinearities f satisfying the conditions of

Theorem 4(a) are

((X-Xo)) 2n-b, (x-x0 ) n+b 2 Y, exp[-a 2IX-xo1 bl(ab)(X),

where -<a<b<- and n-1,2,..... When f(x) a x * the result of Theorem 4 was ob-

tained by GrUnbaum(l], who was the first to consider this problem.

The two classes of nonlinearities considered in (a) and (b) of Theorem 4

are distinct, as the following examples show. For simplicity, assume xoO and a-l.

(i) f(x) - (x -2)(x 2-4) -H4 ,1(x) # 5

satisfies the conditions of Theorem 4(b) but not those of Theorem 4(a), since

f is clearly nomonotonic on [0,,-).
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(ii) f(x) x6-18x 4 + 114x2 - 75

H6 ,1(x) - 3H4 ,1(x) + 51 H2 ,1(X).

Then f'(x) - 6x[(x-6) 2+2) > 0 for x > 0 so that f is monotonic on [0,-)

and satisfies the conditions of Theorem 4(a). C the other hand, the co-

effirient of H4,1 (x) is negative and thus f does not satisfy the conditions

of Theorem 4(b).

The results of Theorem 4 provide a substantial improvement over the no

noise case. As a simple example that illustrates this point, consider an

even nonlinearity which is strictly increasing on [0,-): In the absence of

noise, the output f[s(t)] determines js(t)j and we are left with determining

the sign of s(t) for each t. Thus the number of distinct signals with the

given absolute value is in general uncountably infinite. If s is known to

be a continuous function, we then have 2N+l distinct signals; the value of

N can be read off the graph of the function Is(t)j and may be finite or In-

finite (N is the number of points t such that s(t) - 0 and s(T) # 0 in some

left neighborhood of t). In sharp contrast, in the presence of Gaussian

noise N satisfying the conditfon of Theorem 4, the mean and correlation func-

tions of the output process f[s+N] determine s up to a global sign. This

substantial improvement over the no noise case is due to the fact that the

Gaussian noise takes all real values and thus, the output mean and correlation

functions contain more information about s than just f(s). Even more Illumin-

ating is the case where the nonlinearity f is a symmetric interval window

f(x) - laa]( ). In the absence of noise, we can only determine whether

Is(t)I 1 a or Is(t) I > a for each t; in the presence of the noise N, the sig-

nal s is determined up to a global sign.



It should be noted that the condition on the zeros of the noise covariance

R imposed in Theorem 4 could be weakened in certain cases. For example,

it is clear that the reconstruction procedure of Theorem 4 remains valid

with no conditions on R in case the function Is(t)-x 0 , which is reconstructed

from the output moment function mi1 , satisfies

Is(t)-xol > 0 a.e. for a<t<b

and

Is(t)-xol - 0 for t4 (a,b)

for some -:ca < b x-. Next suppose that for some -o<a<b<-,

Is(t)-xol - 0 for a5tsb

and

Is(t)-xol > 0 a.e. for t 4 ([a,b].

Then for the reconstruction procedure of Theorem 4 to be feasible, we need that

R(t) # 0 for some t> b-a, which is much weaker than the condition imposed in

Theorem 4. The main point here is that the reconstructed function Is(t)-xo1

enables us to check whether or not a given noise covariance R allows the re-

construction procedure of Theorem 4 to apply.

For arbitrary covariances R, we can always reconstruct a set of at least

two signals containing the actual signal. As an example, consider the case

where R(t) - 0 for all Iti T, e.g. triangular covariance. Denote by N .he

number of those open intervals of zeros of Is(t)-Y0 l whose length is a PT.

Then a set of 2N+1 signals can be reconstructed by applyinu the procedure des-

cribed in the proof of Theorem 4 to each of the (N+l) intervals over which

Is(t)-xol 0 a.e. This set contains the actual signal s and any two signals

SlS 2 in the set satisfy si(t) O2(t) or s,(t) + s2(t) * 2x0 for each Oixed t.
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In case higher order moments of the output process f[s(t)+N(t)] are

available, results similar to those of Theorem 4 can be obtained for addi-

tional classes of nonlinearities f. In particular, if f2(x), rather then

f(x), satisfies the conditions of Theorem 4, the conclusion of Theorem 4

remains valid provided we use the second moment function

m2(t) - E{f2[s(t) + Nit)i)

and the fourth order correlation function

C2(t,T) a E{f 2(s(t) + N(t)]f 2 s(r)+N(r)J}

of the output process. This extension covers certain, possibly discontinuous,

asymmetric nonlinearities f such that f2 is symmetric around some xo, as

well as certain odd nonlinearities not covered by Theorems I and 2. For ex-

ample, the nonlinearity (with a-l for simplicity)

f(x) - x3-7x a H3 ,1(x) - 4 HI,I(x)

is not monotonic nor has nonnegative Hermite coefficients and hence the recon-

struction of the signal s is not feasible by Theorems 1 and 2. On the other

hand,

f2(x) (x3_7x) 2 = H6 ,1 (x) + H4,1(x) + 10 H2 ,1(x) + 22

and thus f2(x) satisfies the conditions of Theorem 4(b). Hence the signal s

can be reconstructed, up to a global sign, from the moment and correlation

functions m2 and C2 of the output process.

Finally, when the first or second order distributions (rather than mments)

of the output process are known, we have the following result, where 8(f) de-

notes the a-field of Borel sets generated by f.
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Theorem 5 (1) The signal s can be reconstructed from the first order

distribution of the output if 8(f) contains an interval of the form (-Ga)

or (a,-w), where - <a, or two finite intervals (ab) and (c,d) with A+bflt+d.

() If 8(f) contains a finite interval (a,b), and if the noise correla-

tion function R has at most a finite number of zeros on each finite interval,

then a set ot two signals s and a+b-s can be reconstructed from the first and

second order distributions of the output; and when an-b, the signal s can

be reconstructed up to a global sign.

(i) follows from Theorem 1 and the remark following Theorem 3, and (ii)

follows from Theorem 4.
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*Fig. 1 The graph of [#(z-ylu)-#(z+ylu)J and typical f(z).
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